

Welcome to ZPUI documentation!

ZPUI stands for ZeroPhone UI, it’s the official user interface for ZeroPhone (installed on ZeroPhone official SD card images). It allows you to interact with your ZeroPhone, using the 1.3” OLED and the 30-button numpad.

ZPUI is based on pyLCI, a general-purpose UI for embedded devices. However, unlike pyLCI, ZeroPhone is tailored for the ZeroPhone hardware, namely, the 1.3” monochrome OLED and 30-key numpad (though it still retains input&output drivers from pyLCI), and it also ships with ZeroPhone-specific applications.

Guides:

	Hacking on UI

	Debugging issues

	Managing and developing applications

ZPUI core consists of 5 parts:

	Input system

	Output system

	UI elements

	Applications

	Glue logic (mostly main.py launcher)

Development plans

Working on documentation

Hardware guide

Absolute necessities:

	A HD44780-compatible character display, from 16x2 to 20x4. They are cheap and available in most electronics shops in the world, as well as in most starter kits.

	At least 5 simple pushbuttons (very cheap and salvageable from just about anything), or a USB keyboard/numpad.

Some remarks:

	There are Raspberry Pi shields which have a character LCDs and some buttons. They’re good, too - as long as they’re in the “supported” list.

	Supported shields:

	
	PiFaceCAD Raspberry Pi shield

	Adafruit 16x2 Character LCD + Keypad for Raspberry Pi

	Chinese “LCD RGB KEYPAD ForRPI” shield (black PCB, pin-to-pin copy of aforementioned Adafruit shield)

Ways to connect your hardware:

	Is it a shield pyLCI supports? Great, plug it on top of your Raspberry Pi and you’re done!

	If all you have is the character display and some buttons, you can:
	Connect them over GPIO (works for both screen and buttons) (only Raspberry Pi GPIO supported at the moment)

	Connect them over I2C using a PCF8574 expander (works for both screen and buttons, 1$ on eBay)

	When assembling the hardware yourself, you can easily combine connection methods - for example, connect your LCD over I2C and buttons over GPIO, or use a shield for LCD and use a USB numpad.

Afterwards, follow to the pyLCI setup part.

Buying/choosing guide

	Want something cheap and minimum effort? Get a “LCD RGB KEYPAD ForRPI” shield. It’s 6$, you can find it on eBay just by searching “Raspberry Pi LCD shield” and sorting the list by “Lowest price first”. It’ll take its time to arrive, but it’s a great value for the price.

	Want something quickly and minimum effort? Get a PiFaceCAD shield, or an Adafruit one. They’re sold by distributors in UK/USA, and will arrive quickly. Moreover, they’re nicely made.

	Want something quickly and cheaply? You can assemble your own hardware from what you have. I2C expanders come in handy when you need to save pins, but connecting things through GPIO is a good alternative.

	Index

	Module Index

	Search Page

Installing and updating pyLCI

git clone https://github.com/CRImier/pyLCI
cd pyLCI/
./setup.sh #Install main dependencies and create a install directory
./config.sh #Install dependencies for your input&output devices
nano config.json #Describe your input&outputdevices (if you have a supported shield, previous step will edit this for you)
sudo python main.py #Start the system to test your configuration - do screen and buttons work OK?
#Once configured:
./update.sh #Transfer the working system to your install directory

Note

Behind the scenes:

When you run ./setup.sh, pyLCI is copied to /opt/pylci, this is done to make autorun code easier and allow experimentation while making it harder to lock you out of the system if pyLCI is your main control interface. /opt/pylci will be referred to as “install directory”, while the directory you cloned the repository to will be referred to as “download directory”. ./update.sh, when run from download directory, will transfer the changes from the download directory (and GitHub) to the install directory.

Setup

setup.sh is the first script to be run after installation. It checks if you have python and python-pip installed and installs them if they aren’t (using apt-get), then creates the install directory, copies all the files to it and installs a systemd unit file for system to run at boot. Perfect for Raspbian and Debian Jessie, TODO: add support for other systems.

Note

The system typically runs as root, and therefore is to be run as sudo/root user. Curious about the reasons? It’s explained in the FAQ.

Installing dependencies for hardware

config.sh is the script that installs all the necessary packages and python libraries, depending on which hardware you’re using. It will also set proper config.json contents if you’re using a shield which has a pyLCI driver.

Configuring input and output devices

config.json is the file currently responsible for input and output hardware module configuration. It’s JSON, so if you launch the system manually and see JSONError exceptions in the output, you know you have misspelled something.

Note

Generally, you won’t need to edit config.json if you’re using any shields recognised by config.sh because the configuration will be done automatically.

Its format is as follows:

{
 "input":
 [{
 "driver":"driver_filename",
 "args":["value1", "value2", "value3"...]
 }],
"output":
 [{
 "driver":"driver_filename",
 "kwargs":{ "key":"value", "key2":"value2"}
 }]
}

Documentation for input and output drivers have sample config.json for each driver. "args" and "kwargs" get passed directly to drivers’ __init__ method, so you can read the driver documentation/files to see if there are any options you could tweak.

Systemctl commands

	systemctl start pylci.service

	systemctl stop pylci.service

Note

This document refers to two pyLCI directories. First is “download directory”, this is the directory which has been created by running git clone command. Second is “install directory”, which is where pyLCI has been copied over by the setup.sh script.

Directory separation is good for being able to experiment with configuration options without breaking the current install, as well as for developing applications for the system while not cluttering your install version.

Launching the system manually

For testing configuration or development, you will want to launch the system directly so that you’ll see system exception logs and will be able to stop it with a simple Ctrl^C. In that case, just run the system like python main.py from your download/install directory.

Tip

If system refuses to shut down (happens due to input subsystem threads not finishing sometimes), feel free to find its PID using ps ax|grep "python main.py" and do a kill -KILL $PID on it.

After you’re done configuring/developing on the system, you can use update.sh to transfer your changes to the install directory.

Updating

update.sh is for updating your pyLCI install, pulling new commits from GitHub and copying all the new files from download directory to the install directory. This is useful to make your installed system up-to-date if there have been new commits or if you made some changes and want to transfer them to pyLCI install directory.

Note

update.sh automatically pulls all the GitHub commits - just comment the corresponding line out if you don’t want it. It also runs systemctl start pylci.service.

Debugging issues

Debugging in general

Basic debugging steps:

	Launch system manually and see the error messages. Go to the directory you installed pyLCI from and launch python main.py. Alternatively, use journalctl -u pylci.service for a system that was running in daemon mode but crashed unexpectedly.

	Check your connections.

Hardware/driver issues:

	Check that the I2C/SPI/GPIO interfaces you’re trying to use are available in /dev/. You might need to run sudo raspi-config and enable the interfaces you need (for Raspberry Pi boards) or do other system-specific changes (for other boards, see the manuals the manufacturer should provide).

	In case of I2C connection, check your I2C device connection with i2cdetect, you should see its address in i2cdetect’s output when connected the right way.

	Check your connections in case you assembled things manually. In case of shields, there shouldn’t be any problems.

Output issues

Basic debugging steps:

	Launch the output driver manually to display the test sequence. Go to the directory you installed pyLCI from and launch the output driver directly like python output/drivers/your_driver.py. You might need to adjust variables in if __name__ == "__main__": section.

	Is the driver you’re using even the correct one? See the config.json and documentation for the driver you’re using.

Currently, pyLCI uses HD44780-compatible screens as output devices. Minimum screen size is 16x2. There are some known issues when using those. Again, you’re not likely to run into hardware problems when using shields.

Screen displaying garbage

	If using a breakout board, check if it’s compatible with the driver. Some breakouts might use same ICs but have different pinouts, and any two pins interchanged can cause problems.

	Try and tie D0-D3 lines to GND. Those lines floating freely may cause instabilities, though it doesn’t happen often.

	You can try to tie the R/W line to GND, too. It’s even necessary in some cases, like Pi GPIO driver.

	Put a ~100pF capacitor between GND and EN. If screen starts quickly filling up with blocks after some time, pull the EN line down with a 10K resistor.

Screen characters being shifted incorrectly

	Try to set "autoscroll":True in config.json in output description (in kwargs section).

Only half of the screen is used

	Make sure you didn’t set "autoscroll":True in config.json in output description (in kwargs section).

Nothing on the screen

	Is first row of blocks shown? If not, regulate the contrast with a potentiometer. You can also try to tie the contrast pin to GND.

	Does screen receive 5V (not 3.3V) as VCC? Unless it’s a screen that’s capable of doing 3.3V (must be stated in screen’s description), that’s a no-go.

	Index

	Module Index

	Search Page

Hacking on UI

If you want to change the way ZPUI looks and behaves for you,
make a better UI for your application by using more graphics or even
design your own UI elements, these directions will help you on your way.

Using the ZPUI emulator

ZPUI has an emulator that will allow you to test your applications, UI tweaks
and ZPUI logic changes, so that you don’t have to have a ZeroPhone to develop
and test your UI.

It will require a Linux computer with a graphical interface running (X forwarding
might work, too) and Python 2.7 available. Here are the setup and usage instructions.

Tweaking how the UI looks

ZPUI allows you to modify the way UI looks. The main way is tweaking UI element
“views” (a view object defines the way an UI element is displayed). So, you can
change the look of a certain UI element (say, main ZPUI menu), or a group of
elements (like, force a certain view for all checkboxes). You can also define your
own views, then apply them to UI elements using the same method. To know more about it,
read here [http://wiki.zerophone.org/index.php/Tweaking_ZeroPhone_UI].

If your needs aren’t covered by this, feel free to modify the ZPUI code -
it strives to be straightforward, and the parts that aren’t are either
covered with comments and documentation, or will be covered upon request.
If you need assistance, contact us on IRC or email!

Note

If you decide to modify the ZPUI code, here’s a starting point. Also, please open an issue [https://github.com/ZeroPhone/ZPUI/issues/new] on GitHub describing your changes - we can include it as a feature in the next versions of ZPUI!

Warning

Modifying ZPUI code directly might result in merge conflicts if you will update using git pull, or the built-in “Update ZPUI” app. Again, please do consider opening an issue on GitHub proposing your changes to be included in the mainline =)

Making and modifying UI elements

If existing UI elements do not cover your usecase, you can also
make your own UI elements! Contact us to find out how,
or just use the code for existing UI elements [https://github.com/ZeroPhone/ZPUI/tree/master/ui] as guidelines if you feel confident.

Also, check if the UI element you want is mentioned in ZPUI TODO [http://docs.readthedocs.io/en/latest/getting_started.html] -
there might already be progress on that front, or you might find some
useful guidelines.

Testing the UI

There are two ways to test UI elements:

1. Running existing tests

There’s a small amount of tests, they’re being added when bugs are found,
sometimes also when features are added. From ui/tests folder,
run existing tests like:

python -m unittest TEST_FILENAME (without .py at the end)

For example, try:

python -m unittest test_checkbox

2. Running example applications

There are example applications [https://github.com/ZeroPhone/ZPUI/tree/master/apps/example_apps] available for you to play with UI elements.
You can run ZPUI in single-app mode to try out any UI element before using it:

python main.py -a apps/example_apps/checkbox_test

You can also, of course, use the code from example apps as a reference
when developing your own applications.

Contributing your changes

Send us a pull request [https://github.com/ZeroPhone/ZPUI/compare]! If your changes affect the UI element logic, please
try and make a test that checks whether it really works. If you’re adding a new UI
element, add docstrings to it - describing purpose, args and kwargs, as well as
an example application to go with it.

Useful links

	Chat logs about ZPUI/ZeroPhone [http://wiki.zerophone.org/index.php/Chat_logs_about_ZeroPhone/ZPUI]

Input subsystem

These are the devices that receive key commands from some external source and route them to your applications.
At the input system core, there’s InputListener. It receives key events from drivers you use and routes them to currently active application.

Available input drivers:

	HID input driver

	PCF8574 input driver

	PiFaceCAD input driver

	Adafruit CharLCD Plate&Chinese “LCD RGB KEYPAD” shield input driver

	Raspberry Pi GPIO input driver

InputListener

The i variable you have supplied by main.py load_app() in your applications is an InputListener instance. It’s operating on key names, such as “KEY_ENTER” or “KEY_UP”. You can assign callback once a keypress with a matching keyname is received, which is as simple as i.set_callback(key_name, callback).
You can also set a dictionary of "keyname":callback_function mappings, this would be called a keymap.

	
class input.input.InputListener(drivers, keymap=None)

	A class which listens for input device events and calls corresponding callbacks if set

	
__init__(drivers, keymap=None)

	Init function for creating KeyListener object. Checks all the arguments and sets keymap if supplied.

	
receive_key(key)

	This is the method that receives keypresses from drivers and puts them into self.queue for self.event_loop to receive

	
set_streaming(callback)

	Sets a callback for streaming key events. The callback will be called
with key_name as first argument but should support arbitrary number
of positional arguments if compatibility with future versions is desired.

	
remove_streaming()

	Removes a callback for streaming key events, if previously set by any app/UI element.

	
set_callback(key_name, callback)

	Sets a single callback of the listener

	
check_special_callback(key_name)

	Raises exceptions upon setting of a special callback on a reserved/taken keyname

	
set_maskable_callback(key_name, callback)

	Sets a single maskable callback of the listener.
Raises CallbackException if the callback is one of the reserved keys or already is in maskable/nonmaskable keymap.

A maskable callback is global (can be cleared) and will be called upon a keypress
unless a callback for the same keyname is already set in keymap.

	
set_nonmaskable_callback(key_name, callback)

	Sets a single nonmaskable callback of the listener.
Raises CallbackException if the callback is one of the reserved keys or already is in maskable/nonmaskable keymap.

A nonmaskable callback is global (never cleared) and will be called upon a keypress
even if a callback for the same keyname is already set in keymap (callback from the keymap won’t be called).

	
remove_callback(key_name)

	Removes a single callback of the listener

	
remove_maskable_callback(key_name)

	Removes a single maskable callback of the listener

	
set_keymap(keymap)

	Sets all the callbacks supplied, removing the previously set keymap completely

	
replace_keymap_entries(keymap)

	Sets all the callbacks supplied, not removing previously set but overwriting those with same keycodes

	
clear_keymap()

	Removes all the callbacks set

	
event_loop(index)

	Blocking event loop which just calls callbacks in the keymap once corresponding keys are received in the self.queue.

	
listen()

	Start event_loop in a thread. Nonblocking.

	
stop_listen()

	This sets a flag for event_loop to stop. It also calls a stop method of the input driver InputListener is using.

	
atexit()

	Exits driver (if necessary) if something wrong happened or ZPUI exits. Also, stops the listener

Note

In v1.0 architecture, there’s a single InputListener instance shared among all applications, so when you set some callbacks for your application and then exit it or execute your application’s menu element, there’s a very good chance your callbacks won’t be there anymore once you return.
You won’t need to think about it unless you’re setting InputListener yourself - mostly it’s taken care of by UI objects, which set the keymaps themselves themselves (for example, Menu UI element sets the callbacks each time a menu is activated and each time a menu element callback execution is finished (because a Menu can’t be sure whatever got called by the callback didn’t set some of callbacks some other way, say, the element’s callback was activating a nested menu.)

If you do set callbacks/keymap yourself (very useful for making your own UI elements, or for applications needing custom keybindings), it’s important to remember that you need to stop InputListener before and start it again afterwards, since the changes do not take place until that’s done. For example, this is how you would set your own callback:

i.stop_listen()
i.clear_keymap() #Useful because there might be callbacks left from whatever your function was called by
#... Set your callbacks
i.set_callback("KEY_ENTER", my_function)
i.listen()

Glue logic functions

Warning

Not for user interaction, are called by main.py, which is pyLCI launcher.

	
input.input.init(input_configs)

	This function is called by main.py to read the input configuration, pick the corresponding drivers and initialize InputListener.

It also sets listener globals of input module with driver and listener respectively, as well as registers listener.stop() function to be called when script exits since it’s in a blocking non-daemon thread.

Drivers:

	HID input driver

	PCF8574 input driver

	PiFaceCAD input driver

	Adafruit CharLCD Plate&Chinese “LCD RGB KEYPAD” shield input driver

	Raspberry Pi GPIO input driver

	Index

	Module Index

	Search Page

HID input driver

Sample config.json:

"input":
 [{
 "driver":"hid",
 "kwargs":
 {
 "name":"HID 04d9:1603"
 }
 }]

To get device names, you can just run python input/driver/hid.py while your device is connected. It will output available device names.

	
class input.drivers.hid.InputDevice(path=None, name=None, **kwargs)

	A driver for HID devices. As for now, supports keyboards and numpads.

	
__init__(path=None, name=None, **kwargs)

	Initialises the InputDevice object.

Kwargs:

	path: path to the input device. If not specified, you need to specify name.

	name: input device name

	
runner()

	Blocking event loop which just calls supplied callbacks in the keymap.

	Index

	Module Index

	Search Page

PCF8574 input driver

It works with PCF8574 IO expanders. You can see an guide on modifying them and connecting them to buttons & I2C here. [http://www.instructables.com/id/Raspberry-Pi-Using-1-I2C-LCD-Backpacks-for-1602-Sc/]

"input":
 [{
 "driver":"pcf8574",
 "kwargs":
 {
 "addr":63,
 "int_pin":4
 }
 }]

	
class input.drivers.pcf8574.InputDevice(addr=39, bus=1, int_pin=None, **kwargs)

	A driver for PCF8574-based I2C IO expanders. They have 8 IO pins available as well as an interrupt pin. This driver treats all 8 pins as button pins, which is often the case.

It supports both interrupt-driven mode (as fr now, RPi-only) and polling mode.

	
__init__(addr=39, bus=1, int_pin=None, **kwargs)

	Initialises the InputDevice object.

Kwargs:

	bus: I2C bus number.

	addr: I2C address of the expander.

	int_pin: GPIO pin to which INT pin of the expander is connected. If supplied, interrupt-driven mode is used, otherwise, library reverts to polling mode.

	
runner()

	Starts listening on the input device. Initialises the IO expander and runs either interrupt-driven or polling loop.

	
loop_interrupts()

	Interrupt-driven loop. Currently can only use RPi.GPIO library. Stops when stop_flag is set to True.

	
loop_polling()

	Polling loop. Stops when stop_flag is set to True.

	
process_data(data)

	Checks data received from IO expander and classifies changes as either “button up” or “button down” events. On “button up”, calls send_key with the corresponding button name from self.mapping.

	Index

	Module Index

	Search Page

PiFaceCAD input driver

This driver works with PiFace Control and Display Raspberry Pi shields.

Sample config.json section:

"input":
 [{
 "driver":"pfcad"
 }]

Note

Generally, you won’t need to edit config.json if you’re using this shield because it’ll be done automatically by config.sh.

	
class input.drivers.pfcad.InputDevice

	A driver for PiFace Control and Display Raspberry Pi shields. It has 5 buttons, one single-axis joystick with a pushbutton, a 16x2 HD44780 screen and an IR receiver (not used yet).

	
__init__()

	Initialises the InputDevice object and starts pifacecad.SwitchEventListener. Also, registers callbacks to press_key method.

	
start()

	Starts listening on the input device. Initialises the IO expander and runs either interrupt-driven or polling loop.

	
loop_polling()

	Polling loop. Stops when stop_flag is set to True.

	
process_data(data)

	Checks data received from IO expander and classifies changes as either “button up” or “button down” events. On “button up”, calls send_key with the corresponding button name from self.mapping.

	
send_key(keycode)

	A hook to be overridden by InputListener. Otherwise, prints out key names as soon as they’re pressed so is useful for debugging.

	
stop()

	Sets the stop_flag for loop function.

	
activate()

	Starts a thread with start function as target.

	
deactivate()

	Starts a thread with start function as target.

	Index

	Module Index

	Search Page

Adafruit CharLCD Plate&Chinese “LCD RGB KEYPAD” shield input driver

This driver works with Adafruit Raspberry Pi character LCD&button shields, as well as with Chinese clones following the schematic (can be bought for 5$ on eBay, typically have “LCD RGB KEYPAD ForRPi” written on them).

Sample config.json section:

"input":
 [{
 "driver":"adafruit_plate"
 }]

Note

Generally, you won’t need to edit config.json if you’re using this shield because it’ll be done automatically by config.sh.

	
class input.drivers.adafruit_plate.InputDevice(addr=32, bus=1, **kwargs)

	A driver for Adafruit-developed Raspberry Pi character LCD&button shields based on MCP23017, either Adafruit-made or Chinese-made.

Tested on hardware compatible with Adafruit schematic and working with Adafruit libraries, but not on genuine Adafruit hardware.

	
__init__(addr=32, bus=1, **kwargs)

	Initialises the InputDevice object.

Kwargs:

	bus: I2C bus number.

	addr: I2C address of the expander.

	
init_expander()

	Initialises the IO expander.

	
runner()

	Polling loop (only one there can be on this shield, since interrupt pin is not connected).

	
process_data(data)

	Checks data received from IO expander and classifies changes as either “button up” or “button down” events. On “button up”, calls send_key with the corresponding button name from self.mapping.

	
setMCPreg(reg, val)

	Sets the MCP23017 register.

	
readMCPreg(reg)

	Reads the MCP23017 register.

	Index

	Module Index

	Search Page

Raspberry Pi GPIO input driver

Driver for buttons connected to GPIO. Up to 8 button are supported now.
Sample config.json:

"input":
 [{
 "driver":"pi_gpio",
 "kwargs":
 {
 "button_pins":[25, 24, 23, 18, 22, 27, 17, 4]
 }
 }]

	
class input.drivers.pi_gpio.InputDevice(button_pins=[], **kwargs)

	A driver for pushbuttons attached to Raspberry Pi GPIO. It uses RPi.GPIO library. Button’s first pin has to be attached to ground, second pin has to be attached to the GPIO pin and pulled up to 3.3V with a 1-10K resistor.

	
__init__(button_pins=[], **kwargs)

	Initialises the InputDevice object.

Kwargs:

	button_pins: GPIO mubers which to treat as buttons (GPIO.BCM numbering)

	debug: enables printing button press and release events when set to True

	
runner()

	Polling loop. Stops when stop_flag is set to True.

	Index

	Module Index

	Search Page

Output subsystem

Currently pyLCI uses HD44780-compatible screens as output devices. Minimum screen size is 16x2, 20x4 screens are tested and working.
Available output drivers:

	PCF8574 I2C LCD backpack driver

	PiFaceCAD output driver

	Adafruit CharLCD Plate&Chinese “LCD RGB KEYPAD” shield output driver

	Raspberry Pi GPIO output driver

	MCP23008 I2C LCD backpack driver

Screen object

The o variable you have supplied by main.py load_app() in your applications is a Screen instance. It provides you with a set of functions available to HD44780 displays.
Most of drivers just provide low-level functions for HD44780 object, which, in turn, provides Screen object users with high-level functions described below:

	
class output.drivers.hd44780.HD44780(cols=16, rows=2, do_init=True, debug=False, buffering=True, **kwargs)

	An object that provides high-level functions for interaction with display. It contains all the high-level logic and exposes an interface for system and applications to use.

	
__init__(cols=16, rows=2, do_init=True, debug=False, buffering=True, **kwargs)

	Sets variables for high-level functions.

Kwargs:

	rows (default=2): rows of the connected display

	cols (default=16): columns of the connected display

	debug (default=False): debug mode which prints out the commands sent to display

	**kwargs: all the other arguments, get passed further to HD44780.init_display() function

	
init_display(autoscroll=False, **kwargs)

	Initializes HD44780 controller.

Kwargs:

	autoscroll: Controls whether autoscroll-on-char-print is enabled upon initialization.

	
display_data(*args)

	Displays data on display. This function checks if the display contents can be redrawn faster by buffering them and checking the output, then either changes characters one-by-one or redraws the screen completely.

*args is a list of strings, where each string corresponds to a row of the display, starting with 0.

	
println(line)

	Prints a line on the screen (assumes position is set as intended)

	
home()

	Returns cursor to home position. If the display is being scrolled, reverts scrolled data to initial position..

	
clear()

	Clears the display.

	
setCursor(row, col)

	Set current input cursor to row and column specified

	
createChar(char_num, char_contents)

	Stores a character in the LCD memory so that it can be used later.
char_num has to be between 0 and 7 (including)
char_contents is a list of 8 bytes (only 5 LSBs are used)

	
noDisplay()

	Turn the display off (quickly)

	
display()

	Turn the display on (quickly)

	
noCursor()

	Turns the underline cursor off

	
cursor()

	Turns the underline cursor on

	
noBlink()

	Turn the blinking cursor off

	
blink()

	Turn the blinking cursor on

	
scrollDisplayLeft()

	These commands scroll the display without changing the RAM

	
scrollDisplayRight()

	These commands scroll the display without changing the RAM

	
leftToRight()

	This is for text that flows Left to Right

	
rightToLeft()

	This is for text that flows Right to Left

	
autoscroll()

	This will ‘right justify’ text from the cursor

	
noAutoscroll()

	This will ‘left justify’ text from the cursor

Glue logic functions

Warning

Not for user interaction, are called by main.py, which is pyLCI launcher.

	
output.output.init(output_config)

	This function is called by main.py to read the output configuration, pick the corresponding drivers and initialize a Screen object.

It also sets screen global of output module with created Screen object.

Drivers:

	MCP23008 I2C LCD backpack driver

	PCF8574 I2C LCD backpack driver

	PiFaceCAD output driver

	Adafruit CharLCD Plate&Chinese “LCD RGB KEYPAD” shield output driver

	Raspberry Pi GPIO output driver

	Index

	Module Index

	Search Page

MCP23008 I2C LCD backpack driver

This driver was written for wide.hk I2C LCD backpacks (picture). [http://www.wide.hk/img/_MG_4713.JPG]
They are very small and slim and don’t have any means to configure their I2C address.

If you have another backpack and the driver doesn’t work with this one, please open an issue on GitHub with a link to the backpack and its drivers for Arduino/Raspberry Pi

Sample config.json:

"input":
 [{
 "driver":"mcp23008",
 "kwargs":
 {
 "addr":"0x3f"
 }
 }]

Note

If you provide backpack’s I2C address as a kwarg, you should pass it as a string (as shown above).

To test your screen, you can just run python output/driver/mcp23008.py while your screen is connected to I2C bus (you might want to adjust parameters in driver’s if __name__ == "__main__" section). It will initialize the screen and show some text on it.

	
class output.drivers.mcp23008.Screen(bus=1, addr=39, debug=False, **kwargs)

	A driver for MCP23008-based I2C LCD backpacks. The one tested had “WIDE.HK” written on it.

	
__init__(bus=1, addr=39, debug=False, **kwargs)

	Initialises the Screen object.

Kwargs:

	bus: I2C bus number.

	addr: I2C address of the board.

	debug: enables printing out LCD commands.

	**kwargs: all the other arguments, get passed further to HD44780 constructor

	
i2c_init()

	Inits the MCP23017 IC for desired operation.

	
write_byte(byte, char_mode=False)

	Takes a byte and sends the high nibble, then the low nibble (as per HD44780 doc). Passes char_mode to self.write4bits.

	
write4bits(data, char_mode=False)

	Writes a nibble to the display. If char_mode is set, holds the RS line high.

	
setMCPreg(reg, val)

	Sets the MCP23017 register.

	Index

	Module Index

	Search Page

PCF8574 I2C LCD backpack driver

This driver works with PCF8574 IO expanders. You can see an guide on modifying them and connecting them to LCD screens & I2C here. [http://www.instructables.com/id/Raspberry-Pi-Using-1-I2C-LCD-Backpacks-for-1602-Sc/]

"output":
 [{
 "driver":"pcf8574",
 "kwargs":
 {
 "addr":"0x3f"
 }
 }]

Note

If you provide backpack’s I2C address as a kwarg, you should pass it as a string (as shown above).

To test your screen, you can just run python output/driver/pcf8574.py while your screen is connected to I2C bus (you might want to adjust parameters in driver’s if __name__ == "__main__" section). It will initialize the screen and show some text on it.

	
class output.drivers.pcf8574.Screen(bus=1, addr=39, debug=False, **kwargs)

	A driver for PCF8574-based I2C LCD backpacks.

	
__init__(bus=1, addr=39, debug=False, **kwargs)

	Initialises the Screen object.

Kwargs:

	bus: I2C bus number.

	addr: I2C address of the board.

	debug: enables printing out LCD commands.

	**kwargs: all the other arguments, get passed further to HD44780 constructor

	
write_byte(data, char_mode=False)

	Takes a byte and sends the high nibble, then the low nibble (as per HD44780 doc). Passes char_mode to self.write4bits.

	
write4bits(value, char_mode=False)

	Writes a nibble to the display. If char_mode is set, holds the RS line high.

	
expanderWrite(data)

	Sends data to PCF8574.

	Index

	Module Index

	Search Page

PiFaceCAD output driver

This driver works with PiFace Control and Display Raspberry Pi shields.

Sample config.json section:

"output":
 [{
 "driver":"pfcad"
 }]

Note

Generally, you won’t need to edit config.json if you’re using this shield because it’ll be done automatically by config.sh.

	
class output.drivers.pfcad.Screen(rows=2, cols=16)

	A driver for PiFace Control and Display Raspberry Pi shields. It has a simple 16x2 LCD on it, controlled by a MCP23S17 over SPI.

Doesn’t yet conform to HD44780 library specs, many functions are not transferred from the pifacecad library.

TODO: rewrite it to remove dependency on PiFaceCAD library.

	
__init__(rows=2, cols=16)

	Initialises the Screen object.

Kwargs:

	rows (default=2): rows of the connected display

	cols (default=16): columns of the connected display

	
enable_backlight()

	Enables backlight. Doesn’t do it instantly, you’ll have to wait until data is sent to the display.

	
disable_backlight()

	Disables backlight.

	
clear()

	Clears the display.

	
display_data(*args)

	Displays data on display.

*args is a list of strings, where each string fills each row of the display, starting with 0.

	Index

	Module Index

	Search Page

Adafruit CharLCD Plate&Chinese “LCD RGB KEYPAD” shield output driver

This driver works with Adafruit Raspberry Pi character LCD&button shields, as well as with Chinese clones following the schematic (can be bought for 5$ on eBay, typically have “LCD RGB KEYPAD ForRPi” written on them).

If you have a genuine Adafruit board, pass "chinese":false keyword argument to the driver in config.json so that the backlight works right.

Sample config.json section for Adafruit board:

"output":
 [{
 "driver":"adafruit_plate",
 "kwargs":
 {
 "chinese":false
 }
 }]

Sample config.json section for Chinese clone:

"output":
 [{
 "driver":"adafruit_plate"
 }]

Note

Generally, you won’t need to edit config.json if you’re using this shield because it’ll be done automatically by config.sh.

	
class output.drivers.adafruit_plate.Screen(bus=1, addr=32, debug=False, chinese=True, **kwargs)

	A driver for Adafruit-developed Raspberry Pi character LCD&button shields based on MCP23017, either Adafruit-made or Chinese-made.
Has workarounds for Chinese plates with LED instead of RGB backlight and LCD backlight on a separate I2C GPIO expander pin.

Tested on hardware compatible with Adafruit schematic and working with Adafruit libraries, but not on genuine Adafruit hardware. Thus, you may have issues with backlight, as that’s the ‘gray area’.

	
__init__(bus=1, addr=32, debug=False, chinese=True, **kwargs)

	Initialises the Screen object.

Kwargs:

	bus: I2C bus number.

	addr: I2C address of the board.

	debug: enalbes printing out LCD commands.

	chinese: flag enabling workarounds necessary for Chinese boards to enable LCD backlight.

	
i2c_init()

	Inits the MCP23017 expander.

	
enable_backlight()

	Enables backlight. Doesn’t do it instantly on genuine boards, you’ll have to wait until data is sent to the display.

	
disable_backlight()

	Disables backlight. Doesn’t do it instantly on genuine boards, you’ll have to wait until data is sent to the display.

	
write4bits(data, char_mode=False)

	Writes a nibble to the display. If char_mode is set, holds the RS line high.

	
setMCPreg(reg, val)

	Sets the MCP23017 register.

	Index

	Module Index

	Search Page

Raspberry Pi GPIO output driver

This driver works with HD44780-screens connected to Raspberry Pi GPIO. The screen connected has to have its RW pin tied to ground.

Sample config.json:

"output":
 [{
 "driver":"pi_gpio",
 "kwargs":
 {
 "pins":[25, 24, 23, 18],
 "en_pin":4,
 "en_pin":17
 }
 }]

	
class output.drivers.pi_gpio.Screen(pins=[], rs_pin=None, en_pin=None, debug=False, **kwargs)

	Driver for using HD44780 displays connected to Raspberry Pi GPIO. Presumes the R/W line is tied to ground. Also, doesn’t yet control backlight.

	
__init__(pins=[], rs_pin=None, en_pin=None, debug=False, **kwargs)

	Initializes the GPIO-driven HD44780 display

All GPIOs passed as arguments will be used with BCM mapping.

	Kwargs:

	
	pins: list of GPIO pins for driving display data bits in format [DB4, DB5, DB6, DB7]

	en_pin: EN pin GPIO number. Please, make sure it’s pulled down to GND (10K is OK). Otherwise, block might start filling up the screen unexpectedly.

	rs_pin: RS pin GPIO number,

	debug: enables printing out LCD commands.

	**kwargs: all the other arguments, get passed further to HD44780 constructor

	
write_byte(byte, char_mode=False)

	Takes a byte and sends the high nibble, then the low nibble (as per HD44780 doc). Passes char_mode to self.write4bits.

	
write4bits(bits, char_mode=False)

	Writes a nibble to the display. If char_mode is set, holds the RS line high.

	Index

	Module Index

	Search Page

UI element reference

UI elements are used in applications and some core system functions to interace with the user. For example, the Menu element is used for making menus, and can as well be used to show lists of items.

Using UI elements in your applications is as easy as doing:

from ui import ElementName

and initialising them, passing your UI element contents and parameters, as well as input and output device objects as initialisation arguments.

UI elements:

	Menu UI element

	Printer UI element

	Refresher UI element

	Checkbox UI element

	Numeric input UI elements

	Character input UI elements

Menu UI element

from ui import Menu
...
menu_contents = [
["Do this", do_this],
["Do this with 20", lambda: do_this(x=20)],
["Do nothing"],
["My submenu", submenu.activate]
]
Menu(menu_contents, i, o, "My menu").activate()

Printer UI element

from ui import Printer
Printer(["Line 1", "Line 2"], i, o, 3, exitable=True)
Printer("Long lines will be autosplit", i, o, 1)

Refresher UI element

from ui import Refresher
counter = 0
def get_data():
 counter += 1
 return [str(counter), str(1000-counter)] #Return value will be sent directly to output.display_data
Refresher(get_data, i, o, 1, name="Counter view").activate()

Checkbox UI element

from ui import Checkbox
contents = [
["Apples", 'apples'],
["Oranges", 'oranges'],
["Bananas", 'bananas']]
selected_fruits = Checkbox(checkbox_contents, i, o).activate()

Numeric input UI elements

from ui import IntegerAdjustInput
start_from = 0
number = IntegerAdjustInput(start_from, i, o).activate()
if number is None: #Input cancelled
 return
#process the number

Character input UI elements

from ui import CharArrowKeysInput
password = CharArrowKeysInput(i, o, message="Password:", name="My password dialog").activate()
if password is None: #UI element exited
 return False #Cancelling
#processing the input you received...

Applications

Applications are layer between user’s goals and same goals accomplished. pyLCI applications are similar to desktop applications, each of them is mean to perform one function/set of similar functions, and perform it well.
There can be an application for any task you want to use pyLCI for - in the worst case, you can write one ;-)

Applications bundled with the default install are:

	Clock app

	I2C toolkit application

	USB device info app

	Music player control app

	Network interface info app

	Partition unmount&info app

	Script execution app

	Shutdown&reboot app

	System information app

	Service control app

	Raspberry Pi video settings app

	pyLCI update app

	Volume control application

	Wireless connections app

Some information on maintaining and writing applications:

	Developing and managing applications

	Skeleton application

	Index

	Module Index

	Search Page

Clock app

This application gives you a simple clock that refreshes once a second. Time shown is the system time.

I2C toolkit application

As for now, this is a fairly simple application which just scans the I2C bus and lists all the devices that have responded. Plans are to include I2C read and I2C write functionality in it.

USB device info app

This application gives you information about connected USB devices.

It lists them in format ["{bus}{dev},{vid_pid}", "name"], you can click on an entry to see full name of the device.

Music player control app

This is proof-of-concept application for controlling a music player - in this case, MOCP. It can switch track to next/previous, as well as toggle play/pause.

Network interface info app

This application shows you network connection information. Under the hood, it uses “ip” command.

It shows you:

	Interface state (up/down)

	IP and IPv6 addresses

	MAC addresses

Partition unmount&info app

This application lets you see the mounted partitions on your system, as well as unmount and eject them.

It’s capable of:

	Listing mounted drives

	Unmounting them

	Ejecting them

	Unmounting them lazily

Note

Lazy unmounting means the filesystem is unmounted as soon as it stops being busy

Script execution app

This application lets you run various pre-defined scripts and commands.

Note

It isn’t yet capable of stopping application’s execution or displaying application’s output.

Defining applications is done in config.json file which is located in the application’s directory (currently apps/scripts). Its format is as follows:

[
 {"path":"./s/login.sh", #Defining a script which's located relative to application directory (``apps/scripts``)
 "name":"Hotspot login"}, #Defining a pretty name which'll be displayed by pyLCI in the application menu
 {"path":"/root/backup.sh", #Defining a script by absolute path
 "name":"Backup things",
 "args":["--everything", "--now"]}, #Giving command-line arguments to a script
 {"path":"mount", #Calling an external command available from $PATH
 "name":"'mount' with -a",
 "args":["-a"]} #Again, command-line arguments
]

Note

#-starting comments aren’t accepted in JSON and are provided solely for explanation purposes

It also gets all the scripts in s/ folder in application’s directory and adds them to the script menu, if they’re not available in config.json.
If “name” parameter is not provided or is not available, it falls back to using script’s filename.

Shutdown&reboot app

This application lets you shutdown and reboot your system cleanly.

Skeleton app

This is an example application [https://github.com/CRImier/pyLCI/tree/master/apps/example_apps/skeleton]. It shows basics of initializing your application, some conventions you need to follow and basics of working with UI elements.

menu_name = "Skeleton app" #App name as seen in main menu while using the system

from subprocess import call
from time import sleep

from ui import Menu, Printer

def call_internal():
 Printer(["Calling internal", "command"], i, o, 1)
 print("Success")

def call_external():
 Printer(["Calling external", "command"], i, o, 1)
 call(['echo', 'Success'])

#Callback global for ZPUI. It gets called when application is activated in the main menu
callback = None

i = None #Input device
o = None #Output device

def init_app(input, output):
 global callback, i, o
 i = input; o = output #Getting references to output and input device objects and saving them as globals
 main_menu_contents = [
 ["Internal command", call_internal],
 ["External command", call_external],
 ["Exit", 'exit']]
 main_menu = Menu(main_menu_contents, i, o, "Skeleton app menu")
 callback = main_menu.activate

System information app

This application gives you information about various system parameters.

It can list:

	Total, used and free memory amounts - same figures free command gives you

	Uptime and load average ratings

	System information - hostname, kernel version, acrhitecture and distribution information

Service control app

This application lists all systemd units available and lets you manage them.

It’s capable of:

	Starting/stopping/restarting/reloading units

	Enabling and disabling units

	Filtering units by their type (service/target/mount/etc.)

Raspberry Pi video settings app

This application lets you change the HDMI/TV display parameters on your Raspberry Pi. Useful when you, for example, want to hot-plug it to a monitor and make RPi recognise it.

It uses a ‘tvservice.py’ wrapper library to provide a layer between command-line calls and UI (library is included in the application and resides in the application folder).

It’s capable of:

	Turning HDMI display on (with preferred settings, see tvservice -p) and off, as well as calling appropriate fbset triggers afterwards.

	Choosing resolution from those the display supports

	Viewing TVService status

	Parsing and showing TVService flags

TVService is installed by default on Raspbian.

pyLCI update app

This application updates your pyLCI install by pulling the latest commits straight from pyLCI GitHub.

Note

Do remember this updates only the pyLCI install currently running, effectively, doing a git pull in the current directory. So, if it’s launched (it is unless you’re launching it manually at the moment) from the install directory (most likely), it’ll “git pull” inside the download directory (/opt/pylci by default), and vice-versa.

Volume control application

This is a simple application for controlling volume. As for now, it supports turning volume up/down or muting it for a single mixer channel. Under the hood, it uses ‘amixer’.

Wireless connections app

This application lets you connect to wireless networks and manage connections. Under the hood, it uses wpa_cli to connect to a running wpa_supplicant instance.

Note

Seriously, wpa_supplicant as wireless management daemon is awesome. Minimalistic and really easy to interface. Also, it’s included and running in latest Raspbian versions (from 02.16).

It uses a ‘wpa_cli.py’ wrapper library to provide a layer between command-line calls and UI (library is included in the application and resides in the application folder).

It’s capable of:

	Scanning wireless networks and displaying scan results

	Connecting to known and open wireless networks

	Viewing wireless connection status

	Managing multiple wireless interfaces

	Saving configuration changes to wpa_supplicant.conf file

If you’re not running wpa_supplicant as a daemon and you want to do it, you should follow this guide <https://learn.sparkfun.com/tutorials/using-pcduinos-wifi-dongle-with-the-pi/edit-interfaces> for adjusting your /etc/network/interfaces and this guide<https://learn.sparkfun.com/tutorials/using-pcduinos-wifi-dongle-with-the-pi/edit-wpasupplicantconf> for creating contents of your /etc/wpa_supplicant/wpa_supplicant.conf.

Managing and developing applications

General information

	Applications are simply folders which are made importable by Python by adding an __init__.py file. pyLCI loads main.py file residing in that folder. It needs an init_app() function inside the main.py file. It also expects a variable called callback which is called when the application is activated by launching it from the menu, and a variable named menu_name which contains a name that’ll be shown in the main menu.

	You can combine UI elements in many different ways, including making nested menus, which makes apps less cluttered.

	pyLCI main menu can have submenus. Submenu is just a folder which has __init__.py file in it, but doesn’t have a main.py file. It can store both application folders and child submenu folders.
	To set a main menu name for your submenu, you need to add _menu_name = "Pretty name" in __init__.py file of a submenu.

	Submenus can be nested - just create another folder inside a submenu folder. However, submenu inside an application folder won’t be detected.

	All application modules are loading when pyLCI loads. When choosing an application in the main menu/submenu, its global callback is called. It’s usually set as the activate() method of application’s main UI element, such as a menu.

	You can prevent any application from autoloading (but still have an option to load it manually) by placing a do_not_load file (with any contents) in application’s folder (for example, see skeleton application folder).

Development tips

	For starters, take a look at the skeleton app

	You can launch pyLCI in a “single application mode” using main.py -a apps/app_folder_path. There’ll be no main menu constructed, and exiting the application exits pyLCI.

	You should not set input callbacks or output to screen while your application is not the one active. It’ll cause screen contents set from another application to be overwritten, which is bad user experience. Make sure your application is the one currently active before outputting things and setting callbacks.

Helpers

These are various objects and functions that help you build the logic
of your application quicker and convert your ideas into code more concisely.

ExitHelper

	
class helpers.usability.ExitHelper(i, keys=['KEY_LEFT'])

	A simple helper for loops, to allow exiting them on pressing KEY_LEFT (or other keys).

You need to make sure that, while the loop is running, no other UI element
sets its callbacks. with Printer UI elements, you can usually pass None
instead of i to achieve that.

Arguments:

	i: input device

	keys: all the keys that should trigger an exit

	
start()

	Clears input device keymap, registers callbacks and enables input listener.

	
do_exit()

	Returns True once exit flag has been set, False otherwise.

	
do_run()

	Returns False once exit flag has been set, True otherwise.

	
reset()

	Clears the exit flag.

	
stop()

	Stop input listener and remove the created keymap. Shouldn’t usually be necessary,
since all other UI elements are supposed to make sure their callbacks are set.

Usage:

eh = ExitHelper(i)
eh.start()
while eh.do_run():
 ... #do something until the user presses KEY_LEFT

There is also a shortened usage form:

...
eh = ExitHelper(i).start()
while eh.do_run():
 ... #do your thing

Oneshot helper

	
class helpers.runners.Oneshot(func, *args, **kwargs)

	Oneshot runner for callables. Each instance of Oneshot will only run once, unless reset.
You can query on whether the runner has finished, and whether it’s still running.

Args:

	func: callable to be run

	*args: positional arguments for the callable

	**kwargs: keyword arguments for the callable

	
run()

	Run the callable. Sets the running and finished attributes
as the function progresses. This function doesn’t handle exceptions.
Passes the return value through.

	
reset()

	Resets all flags, allowing the callable to be run once again.
Will raise an Exception if the callable is still running.

	
running

	Shows whether the callable is still running after it has been launched
(assuming it has been launched).

	
finished

	Shows whether the callable has finished running after it has been launched
(assuming it has been launched).

Usage:

def init_hardware():
 #can only be run once

#since oneshot is only defined once, init_hardware function will only be run once,
#unless oneshot is reset.
oneshot = Oneshot(init_hardware)

def callback():
 oneshot.run() #something that you can't or don't want to init in init_app
 ... #do whatever you want to do

BackgroundRunner helper

	
class helpers.runners.BackgroundRunner(func, *args, **kwargs)

	Background runner for callables. Once launched, it’ll run in background until it’s done..
You can query on whether the runner has finished, and whether it’s still running.

Args:

	func: function to be run

	*args: positional arguments for the function

	**kwargs: keyword arguments for the function

	
running

	Shows whether the callable is still running after it has been launched
(assuming it has been launched).

	
finished

	Shows whether the callable has finished running after it has been launched
(assuming it has been launched).

	
failed

	Shows whether the callable has thrown an exception during execution
(assuming it has been launched). The exception info will be stored in
self.exc_info.

	
threaded_runner(print_exc=True)

	Actually runs the callable. Sets the running and finished attributes
as the callable progresses. This method catches exceptions, stores
sys.exc_info in self.exc_info, unsets self.running and
re-raises the exception. Function’s return value is stored as self.return_value.

Not to be called directly!

	
run(daemonize=True)

	Starts a thread that will run the callable.

	
reset()

	Resets all flags, restoring a clean state of the runner.

Usage:

def init_hardware():
 #takes a long time

init = BackgroundRunner(init_hardware)

def init_app(i, o):
 ...
 init.run() #something too long that just has to run in the background,
 #so that app is loaded quickly, but still can be initialized.

def callback():
 if init.running: #still hasn't finished
 PrettyPrinter("Still initializing...", i, o)
 return
 elif init.failed: #finished but threw an exception
 PrettyPrinter("Hardware initialization failed!", i, o)
 return
 ... #everything initialized, can proceed safely

Combining BackgroundRunner and Oneshot

def init_hardware():
 #takes a long time, *and* can only be run once

init = BackgroundRunner(Oneshot(init_hardware).run)

def init_app(i, o):
 #for some reason, you can't put the initialization here
 #maybe that'll lock the device and you want to make sure
 #that other apps can use this until your app started to use it.

def callback():
 init.run()
 #BackgroundRunner might have already ran
 #but Oneshot inside won't run more than once
 if init.running: #still hasn't finished
 PrettyPrinter("Still initializing, please wait...", i, o)
 eh = ExitHelper(i).start()
 while eh.do_run() and init.running:
 sleep(0.1)
 if eh.do_exit(): return #User left impatiently before init has finished
 #Even if the user has left, the hardware_init will continue running
 elif init.failed: #finished but threw an exception
 PrettyPrinter("Hardware initialization failed!", i, o)
 return
 ... #everything initialized, can proceed safely

Future plans

A TODO document, if you will. This list might be eventually moved to ZPUI GitHub issues.

Note

This list is not by any means complete. What’s listed here is bound to appear sooner or later. What’s not listed is either not yet considered or not going to be implemented - feel free to ask me at GitHub!

Global system changes

	Make hotplug of input/output devices possible

	Include a notification system

Input devices

	Make a “passthrough” driver for HID so that a single keyboard can both be used for X and ZPUI

	Add key remapping to HID driver

	Pressed/released/held button states

Applications

	Bluetooth app (delayed, involves a lot of DBus work)

	MPD/Mopidy app

	Camera app

	Stopwatch/timer app

	UCI management app

	Counter app

	Calculator app

	Mount partitions app

	OpenHAB console

	Twitter reader

	SMS and call app - interfacing to mobile phones and GSM/3G modems

UI elements

Input UI elements

	Date/time picker

	“Quick reading” UI element (word-by-word)

	Wraparound for Menu UI element

Development

	More example apps & examples for UI elements

	Guide about input callbacks and 5 main keys, as well as 30-button numpad

	An app development course

	Make a release system

	More links to UI element usage examples in existing apps

Integration into projects

	Examples for RPC API wrapper (for integration in any projects running in separate threads)

Maintenance

	Refactor main.py launcher

	Clean up comments in UI elements, decide what functions to expose in the docs

	Make an app for configuring ZPUI on the fly

Working on this documentation

If you want to help the project by working on documentation, this is the tutorial on how to start!

Pre-requisites

	Fork the ZPUI repository [https://github.com/ZeroPhone/ZPUI/] on GitHub

	Create a separate branch for your documentation needs

	Install the necessary Python packages for testing the documentation locally:

pip install sphinx sphinx-autobuild sphinx-rtd-theme

Find a task to work on

	Look into ZPUI GitHub issues [https://github.com/ZeroPhone/ZPUI/issues] and see if there are issues concerning documentation

	Unleash your inner perfectionist

	If you’re not intimately familiar with reStructuredText markup, feel free to look through the existing documentation to see syntax and solutions that are already used.

Testing your changes locally

You can build the documentation using make html. Then, you can run:

cd _build/html && python -m SimpleHTTPServer

and connect to your computer on port 8000 to see your changes.

Note

SimpleHTTPServer needs to run in the directory where the HTML files are located (_build/html), so you might need at least three different console windows open - one for editing, one for triggering documentation builds and one for SimpleHTTP server. I, personally, use tmux for that.

Contributing your changes

Send us a pull request [https://github.com/ZeroPhone/ZPUI/compare]!

Useful links

	ReadTheDocs “Getting started” guide [http://docs.readthedocs.io/en/latest/getting_started.html]

 Python Module Index

 h |
 i |
 o

 		 	

 		
 h	

 	[image: -]
 	
 helpers	

 	
 	
 helpers.runners	

 	
 	
 helpers.usability	

 		 	

 		
 i	

 	[image: -]
 	
 input	

 	
 	
 input.drivers.adafruit_plate	

 	
 	
 input.drivers.hid	

 	
 	
 input.drivers.pcf8574	

 	
 	
 input.drivers.pfcad	

 	
 	
 input.drivers.pi_gpio	

 	
 	
 input.input	

 		 	

 		
 o	

 	[image: -]
 	
 output	

 	
 	
 output.drivers.adafruit_plate	

 	
 	
 output.drivers.hd44780	

 	
 	
 output.drivers.mcp23008	

 	
 	
 output.drivers.pcf8574	

 	
 	
 output.drivers.pfcad	

 	
 	
 output.drivers.pi_gpio	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | H
 | I
 | L
 | N
 | O
 | P
 | R
 | S
 | T
 | W

_

 	
 	__init__() (input.drivers.adafruit_plate.InputDevice method)

 	(input.drivers.hid.InputDevice method)

 	(input.drivers.pcf8574.InputDevice method)

 	(input.drivers.pfcad.InputDevice method)

 	(input.drivers.pi_gpio.InputDevice method)

 	(input.input.InputListener method)

 	(output.drivers.adafruit_plate.Screen method)

 	(output.drivers.hd44780.HD44780 method)

 	(output.drivers.mcp23008.Screen method)

 	(output.drivers.pcf8574.Screen method)

 	(output.drivers.pfcad.Screen method)

 	(output.drivers.pi_gpio.Screen method)

A

 	
 	activate() (input.drivers.pfcad.InputDevice method)

 	
 	atexit() (input.input.InputListener method)

 	autoscroll() (output.drivers.hd44780.HD44780 method)

B

 	
 	BackgroundRunner (class in helpers.runners)

 	
 	blink() (output.drivers.hd44780.HD44780 method)

C

 	
 	check_special_callback() (input.input.InputListener method)

 	clear() (output.drivers.hd44780.HD44780 method)

 	(output.drivers.pfcad.Screen method)

 	
 	clear_keymap() (input.input.InputListener method)

 	createChar() (output.drivers.hd44780.HD44780 method)

 	cursor() (output.drivers.hd44780.HD44780 method)

D

 	
 	deactivate() (input.drivers.pfcad.InputDevice method)

 	disable_backlight() (output.drivers.adafruit_plate.Screen method)

 	(output.drivers.pfcad.Screen method)

 	display() (output.drivers.hd44780.HD44780 method)

 	
 	display_data() (output.drivers.hd44780.HD44780 method)

 	(output.drivers.pfcad.Screen method)

 	do_exit() (helpers.usability.ExitHelper method)

 	do_run() (helpers.usability.ExitHelper method)

E

 	
 	enable_backlight() (output.drivers.adafruit_plate.Screen method)

 	(output.drivers.pfcad.Screen method)

 	
 	event_loop() (input.input.InputListener method)

 	ExitHelper (class in helpers.usability)

 	expanderWrite() (output.drivers.pcf8574.Screen method)

F

 	
 	failed (helpers.runners.BackgroundRunner attribute)

 	
 	finished (helpers.runners.BackgroundRunner attribute)

 	(helpers.runners.Oneshot attribute)

H

 	
 	HD44780 (class in output.drivers.hd44780)

 	helpers.runners (module)

 	
 	helpers.usability (module)

 	home() (output.drivers.hd44780.HD44780 method)

I

 	
 	i2c_init() (output.drivers.adafruit_plate.Screen method)

 	(output.drivers.mcp23008.Screen method)

 	init() (in module input.input)

 	(in module output.output)

 	init_display() (output.drivers.hd44780.HD44780 method)

 	init_expander() (input.drivers.adafruit_plate.InputDevice method)

 	input.drivers.adafruit_plate (module)

 	input.drivers.hid (module)

 	input.drivers.pcf8574 (module)

 	
 	input.drivers.pfcad (module)

 	input.drivers.pi_gpio (module)

 	input.input (module)

 	InputDevice (class in input.drivers.adafruit_plate)

 	(class in input.drivers.hid)

 	(class in input.drivers.pcf8574)

 	(class in input.drivers.pfcad)

 	(class in input.drivers.pi_gpio)

 	InputListener (class in input.input)

L

 	
 	leftToRight() (output.drivers.hd44780.HD44780 method)

 	listen() (input.input.InputListener method)

 	
 	loop_interrupts() (input.drivers.pcf8574.InputDevice method)

 	loop_polling() (input.drivers.pcf8574.InputDevice method)

 	(input.drivers.pfcad.InputDevice method)

N

 	
 	noAutoscroll() (output.drivers.hd44780.HD44780 method)

 	noBlink() (output.drivers.hd44780.HD44780 method)

 	
 	noCursor() (output.drivers.hd44780.HD44780 method)

 	noDisplay() (output.drivers.hd44780.HD44780 method)

O

 	
 	Oneshot (class in helpers.runners)

 	output.drivers.adafruit_plate (module)

 	output.drivers.hd44780 (module)

 	
 	output.drivers.mcp23008 (module)

 	output.drivers.pcf8574 (module)

 	output.drivers.pfcad (module)

 	output.drivers.pi_gpio (module)

P

 	
 	println() (output.drivers.hd44780.HD44780 method)

 	process_data() (input.drivers.adafruit_plate.InputDevice method)

 	(input.drivers.pcf8574.InputDevice method)

 	(input.drivers.pfcad.InputDevice method)

R

 	
 	readMCPreg() (input.drivers.adafruit_plate.InputDevice method)

 	receive_key() (input.input.InputListener method)

 	remove_callback() (input.input.InputListener method)

 	remove_maskable_callback() (input.input.InputListener method)

 	remove_streaming() (input.input.InputListener method)

 	replace_keymap_entries() (input.input.InputListener method)

 	reset() (helpers.runners.BackgroundRunner method)

 	(helpers.runners.Oneshot method)

 	(helpers.usability.ExitHelper method)

 	
 	rightToLeft() (output.drivers.hd44780.HD44780 method)

 	run() (helpers.runners.BackgroundRunner method)

 	(helpers.runners.Oneshot method)

 	runner() (input.drivers.adafruit_plate.InputDevice method)

 	(input.drivers.hid.InputDevice method)

 	(input.drivers.pcf8574.InputDevice method)

 	(input.drivers.pi_gpio.InputDevice method)

 	running (helpers.runners.BackgroundRunner attribute)

 	(helpers.runners.Oneshot attribute)

S

 	
 	Screen (class in output.drivers.adafruit_plate)

 	(class in output.drivers.mcp23008)

 	(class in output.drivers.pcf8574)

 	(class in output.drivers.pfcad)

 	(class in output.drivers.pi_gpio)

 	scrollDisplayLeft() (output.drivers.hd44780.HD44780 method)

 	scrollDisplayRight() (output.drivers.hd44780.HD44780 method)

 	send_key() (input.drivers.pfcad.InputDevice method)

 	set_callback() (input.input.InputListener method)

 	set_keymap() (input.input.InputListener method)

 	set_maskable_callback() (input.input.InputListener method)

 	
 	set_nonmaskable_callback() (input.input.InputListener method)

 	set_streaming() (input.input.InputListener method)

 	setCursor() (output.drivers.hd44780.HD44780 method)

 	setMCPreg() (input.drivers.adafruit_plate.InputDevice method)

 	(output.drivers.adafruit_plate.Screen method)

 	(output.drivers.mcp23008.Screen method)

 	start() (helpers.usability.ExitHelper method)

 	(input.drivers.pfcad.InputDevice method)

 	stop() (helpers.usability.ExitHelper method)

 	(input.drivers.pfcad.InputDevice method)

 	stop_listen() (input.input.InputListener method)

T

 	
 	threaded_runner() (helpers.runners.BackgroundRunner method)

W

 	
 	write4bits() (output.drivers.adafruit_plate.Screen method)

 	(output.drivers.mcp23008.Screen method)

 	(output.drivers.pcf8574.Screen method)

 	(output.drivers.pi_gpio.Screen method)

 	
 	write_byte() (output.drivers.mcp23008.Screen method)

 	(output.drivers.pcf8574.Screen method)

 	(output.drivers.pi_gpio.Screen method)

FAQ&contacts

Here are some answers to questions that arise. Don’t forget to look through the “Future plans”!
Got a question that isn’t answered here? Try to look through GitHub issues [https://github.com/CRImier/pyLCI/issues]. If not found, create a new one!
If you have another questions, e-mail me .

	FAQ
	Does pyLCI support screen connected via 595/this particular Pi shield/some other input/output device I have?

	Does pyLCI support graphical/color OLEDs/TFTs, or other non-character non-HD44780 displays?

	Does pyLCI support multiple output devices, such as 2 or more screens?

	Does the system need to run as root?

	Is it possible to run pyLCI under OpenWRT?

	Why does it grab all the HID events from a device given to the HID driver?

	Which hardware can you use for running pyLCI on desktop computer/server/HTPC?

FAQ

Does pyLCI support screen connected via 595/this particular Pi shield/some other input/output device I have?

Short answer - it may not, but it’s likely easy to add support for it.

First of all, look through the drivers supported. If you don’t understand something, feel free to ask (GitHub issue/e-mail)! I’ll be happy to help you, as well as update the docs.

Second thing is - drivers for input/output devices are hella easy to implement. HD44780 screens use a common library, so that only the “sending actual commands/characters” to the character screen has to be implemented, and input devices just have to send “KEY_something” strings to InputListener when there’s a keypress, optionally, do their best to shutdown cleanly (bane of the HID driver for now). You have a shield with a Python library available? Chances are, it’s easy to write a driver for it by hooking it up to pyLCI driver structure - look at pfcad driver, that’s exactly the approach used. Or look at the output/driver/pi_gpio driver, it’s a nice example of leveraging the HD44780 abstraction. In short - you can do it yourself, and if you can’t, then open an issue on GitHub and you can help develop and test the driver to whatever input device you have so that you can enjoy all the benefits of pyLCI.

Note

Well, I have to admit things are still better not using some additional libraries, but they work, and that’s the main thing. You need a driver, quick? Great, just take a look at current version of output/drivers/pfcad, it’s an example of both how to connect an external library and on various workarounds you might need to use.

Does pyLCI support graphical/color OLEDs/TFTs, or other non-character non-HD44780 displays?

Short answer - it yet doesn’t, but I’m developing everything so that it will.

There’s a significant amount of work to be put into it. You need to make fonts for applications/UI elements relying on character output, facilitate display re-draws so that it’s not painfully slow because it’s redrawing the whole display every time, provide abstraction layers for fallback & other screen types, oh, and document it well enough so that it’s usable. And yet, this is something to be included.

The reasons it’s not included now is to be able to focus on applications that need to be developed, and because HD44780 screens are the most popular ones - excluding, maybe, the HDMI-, VGA- and RCA-connected ones, but they’re partly the reason pyLCI is developed =) If you lack on-screen place, 20x4 screens are popular and cheap.

Does pyLCI support multiple output devices, such as 2 or more screens?

Short answer - it yet doesn’t, but I’ll be happy to work on it once there’s a user for it and there’s a use case.

It’s not hard to include this, but there are multiple ways to do it, and each one seems right. For now, many users say they’d just pass different screens to different applications, or use a separate screen for monitoring. This is possible, but would require close collaboration with end users of such a setup so that it’s spot on for their applications and adjustable for others - in other words, not a dirty hack for the sake of adding a feature. So - contact me, we can work on it if you need it!

Also, I’d like to remind about LCDproc project, which is all about displaying relatively static information, such as music player/CPU load info and similar things. It’s a well-developed project and pyLCI is not yet claiming its place because they have different use cases, each has their own strengths and weaknesses. It’s not hard to imagine using one screen for pyLCI and another - for LCDproc. That said, it’s also not hard to use full pyLCI configuration on one screen and pyLCI in single-app mode in another ;-)

Does the system need to run as root?

It does not need to, but it doesn’t make much sense otherwise. pyLCI drivers&apps need all kinds of different privileges for various tasks, and it’s run as a single application, so it either needs to be run as root or to be run as a user with enough privileges to do management tasks, which is not that far away from root in terms of danger.

However, from some point there will be a split between pyLCI core and applications, where only core will need to run as a user privileged enough to access input/output devices, and applications will be able to run under separate users.
.. _openwrt_possible:

Is it possible to run pyLCI under OpenWRT?

Yes, as OpenWRT is a Linux distribution. It doesn’t even really need pip if you take care of all dependencies. However, it’s not tested. Also, you’re likely to need extroot because Python takes a lot of space.

Note

UCI interface for now is lacking, but shouldn’t be difficult to implement.

Why does it grab all the HID events from a device given to the HID driver?

Unfortunately, now there’s no ‘passthrough’ driver that’d take only part of all the keypresses and pass all the other further. This driver is to appear soon.

Which hardware can you use for running pyLCI on desktop computer/server/HTPC?

	First of all, there are plans for making a firmware&driver for Arduino devices with commonly encountered button&16x2 LCD shields. The result will be connectable over USB as a USB-Serial device.

	Second thing is that most video cards have I2C lines on video ports accessible from Linux, and there’s no problem with connecting I2C GPIO expanders to it, except that there’s no GPIO to take advantage of button interrupt function.

	Third thing is that you can easily use HID keyboards and numpads as input devices.

 .._contact:

Contact us

ZPUI development discussions happen on IRC, #ZeroPhone on freenode.
If you have found a problem with ZPUI, want to suggest something or found
that something isn’t documented well, please open an issue on GitHub [https://github.com/ZeroPhone/ZPUI/issues/new].
You can also email the main developer if you would like personal assistance.

 nav.xhtml

 Table of Contents

 		Welcome to ZPUI documentation!

_static/comment-close.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/file.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

_static/up-pressed.png

